Representations of Right Hereditary Tensor Algebras of Bimodules

Nadiya Gubareni

Institute of Mathematics Technical University of Częstochowa Poland

MMFT-2017 September 21, 2017

Ministerstwo Nauki i Szkolnictwa Wyższego Organizacja IX Konferencji Modelowanie Matematyczne w Fizyce i Technice (MMFT 2017)

 - zadanie finansowane w ramach umowy 829/P-DUN/2017
 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.

A representation of a K-algebra A is an algebra homomorphism $T: A \to \operatorname{End}_K(V)$, where V is a K-vector space.

A K-algebra A is said to be of **finite representation type** (or **finite type**) if A has only a finite number of non-isomorphic finite dimensional indecomposable representations up to isomorphism. Otherwise A is said to be of **infinite representation type**.

Species and tensor algebras

A - a basic ring with Jacobson radical R.Then $A/R = \prod_{i=1}^{n} F_i$ and $R/R^2 = \prod_{1 \leq i,j \leq n} {}^iM_j$ with uniquely determined division rings F_i and F_i - F_j -bimodules iM_j .

A finite family $\mathfrak{S} = (F_i, M_j)_{i,j \in I}$ is called a **species**.

$$B = \prod_{i \in I} F_i \text{ is a ring}$$
$$M = \bigoplus_{i,j \in I} {}_i M_j \text{ is a } (B, B) \text{-bimodule.}$$
Tensor algebra of the species \mathfrak{S} :

Lensor algebra of the species \mathfrak{S} :

$$\mathfrak{T}(\mathfrak{S}) = \mathfrak{T}_B(M) = \bigoplus_{n=0}^{\infty} M^{\otimes n}$$

where $M^{\otimes 0} = B$, $M^{\otimes n} = M^{\otimes (n-1)} \otimes_B M$ for n > 0.

Definition

The **quiver** $\Gamma(\mathfrak{S})$ of a species \mathfrak{S} is defined as the directed graph whose vertices are indexed by the numbers $i = 1, \ldots, n$, and there is an arrow from the vertex i to the vertex j if and only if $_iM_j \neq 0$.

Definition

A species \mathfrak{S} is simply connected if the underlying graph of $\Gamma(\mathfrak{S})$ is a tree.

Definition

A ring A is said to be **right hereditary** if all submodules of projective right A-modules are projective.

Theorem (P.Gabriel, V.Dlab, C.M.Ringel)

A finite dimensional K-algebra A is a hereditary algebra of finite type if and only if A is Morita equivalent to a tensor algebra $\mathfrak{T}(\mathfrak{L})$, where \mathfrak{L} is a K-species of finite type. A is of finite type if and only if diagram of K-species is a finite disjoint union of Dynkin diagrams of the form A_n , B_n , C_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2 .

Definition (Yu.A.Drozd, 1986)

A species is a finite collection $\mathfrak{S} = (A_i, {}_iM_j)_{i,j\in I}$, where 1) all A_i are prime rings 2) all ${}_iM_j$ are A_i - A_j -bimodules.

- If all $A_i = F_i$ are division rings, \mathfrak{L} is a species in the sense of P.Gabriel.
- If all $A_i = D$ are a division ring, \mathfrak{L} is called a *D*-species

Tensor algebras of species

$$B = \prod_{i \in I} A_i, \quad M = \bigoplus_{i,j \in I} M_j$$

Tensor algebra of the species \mathfrak{S} is the tensor algebra (B, B)-bimodule M:

$$\mathfrak{T}(\mathfrak{S}) = \bigoplus_{i=0}^{\infty} T_i$$

where $T_0 = B$ and $T_{i+1} = T_i \otimes_B M$ (i > 0).

Discrete valuation rings

A discrete valuation ring is a (noncommutative) subring A of a division ring D if there is a (discrete) valuation $v: D \to \mathbf{Z} \bigcup \{\infty\}$ of D such that $A = \{x \in D : v(x) \ge 0\}$.

Example.

A skew power series ring $K[[x, \sigma]]$ with $xa = \sigma(a)x$ for any $a \in K$, where K is a field and $\sigma : K \to K$ is a nontrivial automorphism of K.

If A is a discrete valuation ring, then: A is a local ring with non-zero maximal ideal M of the form M = tA = At, where $t \in A$ is a non-nilpotent element, and $\bigcap_{i=0}^{\infty} M^i = 0.$

Proposition.

Let \mathcal{O}_1 , \mathcal{O}_2 be distinct discrete valuation rings of a division ring D with maximal ideals M_1 and M_2 . Then

•
$$D = \mathcal{O}_1 + \mathcal{O}_2.$$

• There is an element $\pi_1 \in M_1 \setminus M_1^2$ and $\pi_1 \in \mathcal{O}_2^*$. Analogously there is an element $\pi_2 \in M_2 \setminus M_2^2$ and $\pi_2 \in \mathcal{O}_1^*$. So that $M_1 = \pi_1 \mathcal{O}_1$, and $M_2 = \pi_2 \mathcal{O}_2$.

•
$$D^* = \mathcal{O}_1^* \cdot \mathcal{O}_2^* = \mathcal{O}_2^* \cdot \mathcal{O}_1^*.$$

Proposition.

Let \mathcal{O}_1 , \mathcal{O}_2 be distinct discrete valuation rings of a division ring D, and $A = \mathcal{O}_1 \cap \mathcal{O}_2$. Then there exists an element $x \in D$ such that $x^n \notin A$ and $x^{-n} \notin A$ for any $n \in N$.

\mathcal{O} -species

Let

٩

- {\$\mathcal{O}_i\$}\$ be a family of discrete valuation rings (not necessary commutative) with the radical \$\mathcal{M}_i\$ and a division ring of fractions \$D_i\$ for \$i = 1, 2, \ldots, k\$;
- $\{D_j\}$ for $j = k + 1, \dots, n$ be a family of skew fields.
- $\{n_1, n_2, \ldots, n_k\}$ be a set of natural numbers.

$$H_{n_i}(\mathcal{O}_i) = \begin{pmatrix} \mathcal{O}_i & \mathcal{O}_i & \cdots & \mathcal{O}_i \\ R_i & \mathcal{O}_i & \cdots & \mathcal{O}_i \\ \vdots & \vdots & \ddots & \vdots \\ R_i & R_i & \cdots & \mathcal{O}_i \end{pmatrix}$$

\mathcal{O} -species

Definition

Let $I = \{1, 2, ..., n\}$. An \mathcal{O} -species is a family $\Omega = (A_i, {}_iM_j)_{i,j \in I}$, where • $A_i = H_{n_i}(\mathcal{O}_i)$, for i = 1, ..., k, • $A_j = D_j$ for j = k + 1, ..., n, • each ${}_iM_j$ is an $(\tilde{A}_i, \tilde{A}_j)$ -bimodule that is finite dimensional both as a left D_i -vector space and as a right D_j -vector space.

An \mathcal{O} -species Ω is said to be a (D, \mathcal{O}) -species if all $D_i = D$.

Representations of O-species

Definition

A representation $V = (U_i, V_r, j\varphi_i, j\psi_r)$ of an \mathcal{O} -species $\Omega = (A_i, iM_j)_{i,j\in I}$ is a family of right A_i -modules U_i (i = 1, 2, ..., k), a family of right D_r -vector spaces V_r (r = k + 1, ..., n), and of D_j -linear maps:

$$_{j}\varphi_{i}: U_{i} \otimes_{A_{i}} {}_{i}M_{j} \longrightarrow V_{j}$$
 (2.3)

for each $i = 1, 2, \ldots, k$ and $j = k + 1, \ldots, n$, and

$$_{j}\psi_{r}: V_{r} \otimes_{D_{r}} {}_{r}M_{j} \longrightarrow V_{j}$$
 (2.4)

for each r, j = k + 1, ..., n.

Proposition.

Let Ω be a simply connected \mathcal{O} -species. Then the category $\operatorname{Rep}(\Omega)$ of all representations of Ω and the category $\operatorname{Mod}_r \mathfrak{T}(\Omega)$ of all right $\mathfrak{T}(\Omega)$ -modules are naturally equivalent.

Rings of bounded representation type

Definition

An A-module M is called **finitely presented** if there is an epimorphism $\varphi : A^{(n)} \to M$ such that $\text{Ker}(\varphi)$ is a finitely generated A-module.

Definition (R.B.Warfield, Jr)

A ring A is of **bounded representation type** (b.r.t., for short) if the number of generators required for indecomposable finitely presented right A-modules is bounded.

\mathcal{O} -species of bounded representation type

Definition

An \mathcal{O} -species Ω is said to be of **bounded representation type** if the dimensions of its indecomposable finite dimensional representations are bounded above.

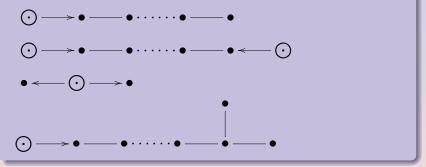
Proposition.

A simply connected \mathcal{O} -species Ω is of bounded representation type if and only if the tensor algebra $\mathfrak{T}(\Omega)$ is of bounded representation type.

(D, \mathcal{O}) -species of b.r.t.

Theorem

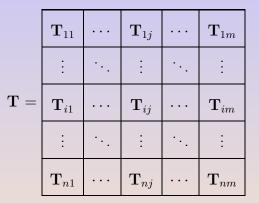
Let \mathcal{O}_i be discrete valuation rings with a common skew field of fractions D. Then a simply connected (D, \mathcal{O}) -species Ω is of b.r.t. iff the diagram $Q(\Omega)$ is a finite disjoint union of Dynkin diagrams of the forms A_n , D_n , E_6 , E_7 , E_8 and the following diagrams:



Nadiya Gubareni Tensor Algebras of Bimodules

Flat mixed matrix problem

Let $\Delta = \{\mathcal{O}_i\}_{i=1,\dots,k}$, D - a common division ring of fractions of \mathcal{O}_i , and $F_{i_s} \in \Delta \cup D$, $\mathbf{T} \in M_{s \times r}(D)$:



The admissible transformations with the matrix \mathbf{T} :

- Left F_{i_s} -elementary transformations of rows within the strip \mathbf{T}_i .
- Right F_{j_t} -elementary transformations of rows within the strip \mathbf{T}^j .
- Additions of rows in the strip \mathbf{T}_j multiplied on the left by elements of $F_r \in \Delta \cup D$ to rows in the strip \mathbf{T}_i .
- Additions of columns in the strip \mathbf{T}^i multiplied on the right by elements of $F_p \in \Delta \cup D$ to columns in the strip \mathbf{T}^j .

Matrix problem of b.r.t.

Definition

A flat matrix problem is of **bounded representation type** if there is a constant C such that $\dim(\mathbf{X}) < C$ for all indecomposable matrices \mathbf{X} . Otherwise it is of **unbounded representation type**.

Lemma.

A simply connected (D, \mathcal{O}) -species Ω is of bounded representation type if and only if the corresponding matrix problem is of bounded representation type.

Example of a matrix problem of b.r.t.

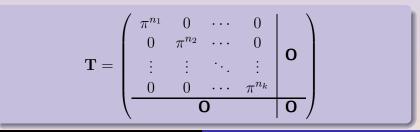
Matrix problem I.

 ${\mathcal O}$ - distinct discrete valuation ring with a division ring of fractions $D;\, {\bf T}\in M_{k\times s}(D)$

Admissible transformations on T:

1. Left $\mathcal O\text{-elementary transformations of rows within the matrix <math display="inline">\mathbf T.$

2. Right $\mathcal{O}\text{-elementary transformations of columns within the matrix <math display="inline">\mathbf{T}.$



Matrix problem II.

 $\mathcal{O}_1, \mathcal{O}_2$ - distinct discrete valuation rings with a common division ring of fractions D; $\mathbf{T} \in M_{k \times s}(D)$

Admissible transformations on T:

1. Left $\mathcal{O}_1\text{-}\mathsf{elementary}$ transformations of rows within the matrix $\mathbf{T}.$

2. Right $\mathcal{O}_2\text{-elementary transformations of columns within the matrix <math display="inline">\mathbf{T}.$

$$\mathbf{T} = \left(\begin{array}{c|c} \mathbf{I} & \mathbf{O} \\ \hline \mathbf{O} & \mathbf{O} \end{array} \right),$$

where I is the identity matrix.

Matrix problem III.

 $\mathcal{O}_1,\mathcal{O}_2$ - distinct discrete valuation rings with a common division ring of fractions $D.~{\bf T}\in M_{k\times s}(D)$

Admissible transformations on \mathbf{T} :

1. Left $\mathcal{O}_1 \bigcap \mathcal{O}_2$ -elementary transformations of rows within the matrix \mathbf{T} .

2. Right D-elementary transformations of columns within the matrix \mathbf{T} .

Examples of matrix problems of ub.r.t.

Lemma.

The matrix problem III is of unbounded representation type:

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ x & x^2 & \cdots & x^n \end{pmatrix}$$

where $x \notin \mathcal{O}_1 \bigcap \mathcal{O}_2$ and $x^{-1} \notin \mathcal{O}_1 \bigcap \mathcal{O}_2$.

Examples of matrix problems of ub.r.t.

Matrix problem IV.

 \mathcal{O} - a DVR with division ring of fractions D, $\varepsilon_1, \ldots, \varepsilon_{n-1} \in \mathcal{O}$; $\mathbf{T} \in M_{k \times s}(D)$

$$\mathbf{T} = \boxed{\mathbf{A}_1 \quad \mathbf{A}_2 \quad \mathbf{A}_3}$$

Admissible transformations on T:

1. Left elementary $\mathcal{O}\text{-transformations}$ of rows on the whole matrix $\mathbf{T}.$

2. Right *D*-elementary transformations of columns within each vertical strip A_i (i = 1, 2, 3).

3. Additions of any column of the block A_1 multiplied on the right by an arbitrary element of D to any column of the block A_2 .

Examples of matrix problems of ub.r.t.

Matrix problem V.

 $\mathcal{O}_1, \mathcal{O}_2$ - distinct discrete valuation rings with a common division ring of fractions D.

$$\mathbf{\Gamma} = egin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix}$$

Admissible transformations on T:

1. Left $\mathcal{O}_1\text{-}elementary$ transformations of rows within the matrix $\mathbf{T}.$

2. Right \mathcal{O}_2 -elementary transformations of rows within the matrix \mathbf{A}_1 .

2. Right D-elementary transformations of columns within the matrix \mathbf{A}_2 .

Thank you very much for your attention.